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A semiempirical MO method for coordination complexes has been derived from basic Hartree-Fock considerations which 
also incorporates the electrostatic effects of the environment. The model is virtually free of any arbitrary scaling parame- 
ters so long as the point-charge and Mulliken multicenter integral approximations are applied systematically to the molecu- 
lar integrals involved, and a correct choice of VOIE’s is incorporated into the diagonal elements of the Hamiltonian. Calcu- 
lated one-electron energy levels are amenable to a “spin-pairing energy” correction, which compensates essentially for the 
initial neglect of multicenter exchange integrals in the Hamiltonian. The concept of an average, effective spin for each MO 
is introduced and shown to be an adequate representation in the LCAO-MO approximation. Finally, the importance of 
employing Lowdin orthogonalization in an iterative procedure to arrive at orbital populations and net atomic charges and 
the external electrostatic effects of the environment are shown to be an essential feature of the method. 

Introduction 
The formalism of semiempirical molecular orbital methods 

has embodied such gross oversimplifications that such meth- 
ods have been branded highly unreliable and of limited 
practical value. However the more exacting methods, in 
particular the ab initio approaches using gaussian orbitals 
and the UHF-SCF (unrestricted Hartree-Fock self-consis- 
tent field) procedure, require large computer facilities and 
virtually unlimited computational time for all but the sim- 
plest molecules of primary inorganic interest. Thus the 
need for a simple but reliable MO method still exists. 

Since its original formulation the semiempirical MO 
scheme has been subjected to various modifications. How- 
ever, the major objections to  the basic format have remained 
essentially unaltered. This point has been well taken by 
Dahl and Ballhausen.’ The major objections may be item- 
ized as follows: (a) procedure for calculating off-diagonal 
matrix elements and arbitrary scaling factors; (b) choice 
and/or dependence of VOIE (valence orbital ionization 
energy) on both metal and ligand orbitals; (c) arbitrary 
scaling or no scaling of ligand u and n orbitals; (d) the ne- 
glect of splitting factors which differentiate the energies of 
metal basis orbitals which are similar but belong to differ- 
ent irreducible representations of the molecular point group; 
(e) the absence of explicit consideration for the stabilizing 
effects of the environment on the complex ion. Additional 
objections not related to these include the choice of basis 
functions (with or without hybridization) and the disregard 
of electron repulsion in the calculated MO’s. All of these 
factors have been considered in the more sophisticated 
methods in one instance or another, but for the sake of 
simplicity and computational expedience semiempirical 
procedures have not been subjected to similar treatment. 

remove the major objections while still retaining the sim- 
plicity of a semiempirical model with minimal computa- 
tional requirements. In this vein, the present paper takes a 
closer look into the formalism of the one-electron model 
and off-diagonal elements based on quantities having a 
sound physical basis. The work of Harris contains most of 
the features of the present method but in a more approxi- 
mate form2 In this respect, the only other related pub- 

The present investigation was undertaken with the aim to 
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lished work is that of Hillier,3 which lacks many of the fea- 
tures given explicit consideration here. Other related meth- 
ods have either been basically computational in nature and 
are therefore not strictly semiempirical or have employed 
the simple Wolfsberg-Helnlholz approximation for the off- 
diagonal  element^.^ In part I of this series the basic format 
of the model is developed, while part I1 is devoted to  the 
computational results vindicating the method. 

In the present paper, it will be shown how the one-elec- 
tron operator approximation to the exact Hartree-Fock 
operator can lead to a semiempirical model which is virtually 
free of the major objections cited above. 

For the case in point we shall consider an isolated cluster 
of the general formula [ML,] Q ,  where Q is the net elec- 
tronic charge on the complex, M is the central metal atom, 
and the L’s are nonmetal ligands which in principle may be 
the same or different. Initially we shall not be concerned 
with the very important stabilizing effects of the environ- 
ment but will give this explicit consideration later on. 

Fundamental Hartree-Fock SCF Considerations 
To arrive at an accurate solution to the molecular prob- 

lem we must consider the effective molecular Hamiltonian, 
H e p o l ,  associated with the solutions to the HF-SCF equa- 
tions. A general expression for either open- or closed-shell 
systems is5s6 

where Nj is the occupation number of the jth molecular 
orbital, qj (Nj = 2 or 1 for doubly or singly occupied MO’s, 
respectively, and 0 otherwise), CY and fi  are the spin labels of 
the electrons, Jj and Kj are the respective two-electron 
Coulomb and exchange operators, and 
kinetic energy operator ( l / 2 V i Z )  and all interactions of the 
valence electrons with the atomic cores. 

Ideally the molecular orbitals should satisfy the Hartree- 
Fock equations 

includes the 
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In the LCAO approximation, the slj have the form 
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s l j  = XCNjXN 
N 

(3) 

where xN are the basis atomic orbitals for the valence elec- 
trons of the N atoms in the complex, and CNj are the orbital 
coefficients. 

If we divide the N atoms of the complex ion into metal, 
M, and ligand, L, atoms respectively, where the index m is 
over the orbitals xN itself, and the indices 1 run through the 
orbitals centered on any ligand atom, then the variational 
principle provides the eigenvalues of (2) through the secular 
determinant 
I H r n ~ ,  w’ - S,N,N’EI = 0 (4) 
where SrnN, lNf  forms the overlap matrix and HrnN,W’ the 
energy matrix with respect t o  all orbitals m and 1 centered 
on atoms N and N‘, including all cases for which N = N‘ and 
N # N’. Systematic application of well-grounded approxi- 
m a t i o n ~ ~  reduces all integrals to one- and two-center types 
for the matrix elements which have the form 

where 

VN’ = X P l N ’ [ J ~ I l  - ‘/ZKN’L] -Zi,r’lr 
1 

with the P factors equal to the net effective populations in 
each MO, TN and TNi are kinetic energy operators, and 
v k  =-qk/rk, where -qk is the net charge on atom k obtained 
from a population analysis. Thus the last term in ( 5 )  pro- 
vides for the ligand field splitting of degenerate orbitals rela- 
tive to the point group symmetry at the kth atom. 
Modified Method of Calculation 

On invoking the following approximations to the terms in 
eq 5 simplification results through systematic application of 
the following formalism: (a) The one-electron operator 
approximation to the exact Hartree-Fock operator is em- 
ployed. (b) Only one-electron integrals are considered. 
Two-electron integrals between valence electrons in the mo- 
lecular framework are not treated explicitly. These, how- 
ever, are compensated for in a “spin pairing energy” correc- 
tion to the calculated one-electron MO’s, which is described 
in detail in section 5. (c) All parts of the Hamiltonian 
which are identifiable with the atomic cores are set equal to 
the orbital ionization energy with restricted charge depen- 
dence. (See Appendix 11.) (d) All multicenter integrals 
are simplified using the Mulliken approximation.’ (e) Only 
overlap integrals are calculated exactly; all other integrals 
which are not accounted for in (c) are evaluated on the basis 
of the point-charge approximation. (See Appendix I.) 
(f) Lowdin orthogonalization is employed in the final analy- 
sis to arrive at  population^.^ (g) Explicit consideration is 
given to an external potential for stabilizing the complex ion. 

1. The Hamiltonian. The complete, effective Hamiltonian 
operator for the [ML,]Q complex ion, He#0m, may be 
broken up into components 

(7) (a) K. Ruedenberg, J. Chem. Phys., 19, 1433 (1951); (b) 
M. Geoppert-Moyer and A.  L. Sklar, ibid., 6, 645 (1938). 

(8) R. S. Mulliken, J.  Chim. Phys. Physicochim. Biol.. 46,615 
(1949). 

(9) P. 0. Lowdin, J. Chem. Phys., 18, 365 (1950). 

H g m  = HT + HvM + Hv, + HG + Hex 
.. - 

H T  is the kinetic energy operator, -‘/zVi2. HVM is the 
potential energy operator due to the metal charge center; as 
a crude approximation, VM = -qM/rk, where rk refers to an 
electron having its origin of coordinates at any center, k ,  in- 
cluding the case k = M. HVL is the potential energy opera- 
tor due to  ligand charge centers. There are as many such 
charge centers as there are ligands. 

H G  is the geometric potential energy operator. This results 
because of the approximations to HvM and H v L  and is 
identifiable with “ligand field splitting’’ which differentiates 
the energies of similar AO’s in different MO irreducible 
representations. Thus it also compensates for the difference 
in energies of (T and II orbitals on the ligands. 

where ( l /r)k are expanded in terms of associated Le endre 
polynomials using the spherical harmonics. The Yo har- 
monics are excluded since these have already been consid- 
ered in the HVM and HvL operators. Matrix elements de- 
rived from this operator are hereafter referred to as “split- 
ting parameters” (SP). He, is the potential energy opera- 
tor due to the external environment. This accounts for 
stabilizing the entire complex ion by neutralizing the net 
charge Q. Thus it vanishes when Q = 0. In order that this 
be independent of the unique geometric positions of 
counteracting ions in the crystalline or solution lattice, the 
charge centers are symmetrically and equally distributed at 
each ligand site. 

where R M L  is the internuclear metal-ligand bond distance, 
and -Q is the total external charge. (See Discussion.) 

approximation, the molecular orbitals of a complex ion 
having the general formula [MLN]Q may be written as 

2. The Diagonal Element Approximatiqn. In the LCAO 

sli =a& + bi@i (7) 
where xi is a metal orbital and @ i  is a set of symmetry- 
adapted orbitals having the general form @i = ZjCijuj, where 
uj are ligand A 0  functions. 

The diagonal matrix elements of the Hamiltonian consist of 
both metal (HMii) and ligand (HLjj) components respectively. 

A. Metal Diagonal Elements. If we consider the one- 
electron operator approximation in the form of eq 6, the 
diagonal elements of the metal are 
H M ~ ~ = ( x ~ ( H ~ ~ ( x ~ ) = ( x ~ ( - ’ / z ~ ~ ~  +VMIX;)+  

Since xi is assumed to be an approximate eigenfunction of 
I-l /2Vi2 $. VMl, we may set the first term in (8) equal to 
ei, the orbital ionization energy of the electron in xi. How- 
ever, in an iterative procedure to achieve self-consistent 
charge and orbital configuration (SCCC) the values of ei will 
vary as a function of the metal charges, q M .  Thus, some 
procedure must be adopted to arrive at this charge depend- 
ence. (See Appendix 11.) 

charge potential between an electron in a metal orbital and 
The second term in (8) represents integrals of electrostatic 
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the j ligands. These neighbor atom potential terms are 
called Madelung terms by Jorgensen, et aZ.," since they re- 
flect Madelung type electrostatic interactions as encountered 
in the ionic crystal model. 

To a good degree of accuracy"'12 it is possible to write 
y = -(qL)j/rj,  where qL is the effective charge on the j th  
ligand and r is its radius vector to the metal orbital charge 
distribution, xi*xi. Substituting this expression into the 
second term in (8) and using a point-charge approximation 
for the integrals (l/rlxixi) yield the result 

(xil j= Qylxi) 1 =-nqL/RML (9) 

where R M L  is the metal-ligand bond distance. We shall re- 
turn to the consequences of this point-charge approxima- 
tion later. 

The third term in (8) has the form 
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Y n p Y n , i m * l x 3  (10) 
For d orbitals in regular octahedral and tetrahedral com- 
plexes, only the Y40, Y44, and Y4+ harmonics need be con- 
sidered. Thus for octahedral complexes, for example, ( 1  0) 
has the explicit form 

where FM are the integration factors pertinent to the sym- 
metry of the ligand field. 

the net external potential, -e, for convenience, is distrib- 
uted equally to give a net charge of qex at each of the n lig- 
ands. Thus qex = -&/n. 

HMii = f i (qM);  - n(qL +, 

The last term in (8) has the general form, nqex/RML where 

Finally the metal diagonal elements become 

As stated above, the external potential is equally distributed 
over each of the n ligands; thus in the last term q ' L  = q~ + 
qex. In cases of dissimilar L ligands the adequacy of this 
procedure would have to be reconsidered. 

diagonal elements may be expressed as 
B. Ligand Diagonal Elements. From eq 7 the ligand 

H L j j  = ( $ J ~ I H Z " ~ ~ " I @ ~ )  = ~ C , 2 ( ~ j l H ~ & m . " U j )  + 
I 

j +  zz k C.C. 11 zk (U.lH~Od"lUk) I (13)  

The normalizing condition requires that 

H L ,  = N , ~ ( @ ~ I H ~ ~ I $ J ~ )  

whence from eq 13 it follows that 

( 1  0) C. K. Jorgensen, S .  M. Homer, W. E. Hatfield, and S. Y. 

( 1 1 )  D. D. Radtke and R .  F .  Fenske,J.  Amer. Ckem. Soc., 89, 

(12) R. F. Fenske, K. G. Coulton, D. D. Radtke, and C. C. 

Tyree, Int. J. Quantum Ckem., 1 ,  191 (1967) .  

2292 (1967).  

Sweeney, Inorg. Chem., 5 ,  951, 9 6 0  (1966) .  

where N i  is the normalizing constant, and (IF)c and (IF)T 
are integration factors for cis and trans ligands, respectively, 
dependent upon the particular molecular geometry and 
irreducible representation. 

term of ( 1  3 )  as 
Proceeding as before from eq 6 ,  we may expand the first 

( p j  I H:gm I ~ j )  = ( ~ j  1 - '/z V i 2  + Vj I ~ j )  + ( ~ j  I V M  I u ~ )  + 
n 

( U j \ , p J j )  + (UjlV, IUj) + ( U j l V e x I U j )  (1 5) 

where the numerical coefficients, C,', have been omitted 
for clarity. The first term in eq 15 may be set equal to 
e j ( q ~ ) j ,  the orbital ionization energy of the electron in uj 
with restricted charge dependence, as was done previously. 
The second and third terms have the respective forms 

-qM / R  ML 

- q ~ ( n  - ~) / (RLL)c  - ~ L / ( R L L ) T  (16) 
where (RLL), and (RLL)T are the ligand-ligand internu- 
clear distances of cis and trans ligands, respectively. 

The fourth term is handled in the manner analogous to 
what has already been done in section 2A, except the spher- 
ical harmonics are all referred to a single coordination site 
of linear geometry (C,,). 

The last term has the form 

Returning to eq 13 and again omitting the c i j c i k  coef. 
ficients, the matrix elements of the second term are 

( U j I H ~ ~ I U k ) = ( U j I - ' / 2 B i 2 + V j l u k )  +(ujl 2 V k ' l u k ) +  
k ' f j  

( U j l V M l V k )  + ( ~ j l v ~ i u k )  + ( ~ j l v ~ x l u k )  ( 1 8 )  
The first term of (18) may be set equal to f v l (qL) l (Uj /uk ) ,  
where (UjIuk) is the ligand-ligand overlap. The last three 
terms are the same as the analogous ones of eq 15 and have 
the forms given in (16)  and (1 7).  However, the second 
term of ( 1  8) is dependent on the coordinates of each ligand 
and has the form 

(WC /WLL)C - (IF), / ~ ( R L L ) T  (19) 

where (1/rp) is the expectation value for the ligand p orbital, 
and the values of (IF), and (IF), are different for different 
irreducible representations. In tetrahedral cases, for ex- 
ample, (RLL),  = ( R L L ) ,  and (1F)c = (IF), = 1. 

Since 

i 
N j z [ Z C i j 2  + (IF)c f (IF),] = 1 

the final form of (1 9) is 
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where the (l/rjl)L and (1/Tj)M are expectation values of the 
appropriate orbitals at the L and M atoms, respectively, and 
the forms of the matrix elements in (24d) and (24e) have 
already been written out explicitly in eq 11, 12, 16, and 17. 
Substitution of these equations into (23) and recognizing the 
form of the diagonal elements (12) and (20) lead to the final 
result 

HMLjj = I/zGMLij [HMij + HLjj - @(-) M + 1 
2 rj 

(25) 1 1 

51 
q'L(-)L + ( 4 M  + q)L)/mML 

where the appearance of 4; is a consequence of the effect of 
the external potential as given previously. 

B. Ligand-Ligand Off-Diagonal Elements. The ligand- 
ligand off-diagonal elements may be treated in the manner 
of eq 19 after the formalism of 21 is adopted 

HLLjj = HZgm(@i, @j) = '/2[(@jIHSmI@j) + 
(Gj IHy$ (26) 

ZX C. C. (@jtIHgmI@ju)] (27) t # u I t  lU 

<@jlHc,O,mI @j) =Ni4[FCjsCjs(@js IHcsy I @jS)  + 

The first term in (27) is zero, and hence the evaluation of the 
integrals for the second term follows along the same lines as 
that given for the second term in eq 13. 

(@jIHcz'l@j) = N&{[xxcc,cjuS'c + xxcit'cjuus'~] x 
t # U  t ' # U '  

where 4 ' ~  is a consequence of the external potential, as 
stated earlier. 

from the form of the molecular Hamiltonian that the off- 
diagonal elements are of two types, namely, metal-ligand, 
HML j i ,  and ligand-ligand, HLLij. 

3. The Off-Diagonal Element Approximation. It follows 

A. Metal-Ligand Off-Diagonal Elements. 
Hm.. = HCOm eff (@i$ xi) = ' / 2 [ ( @ j  IHCZF Ixi) + 

(Xi IHC,Offm ~ + i  )I (21) 

where (@ilHCzFIXj) = ( U ~ ~ I H ~ Z F  Ixl) and Xjj =G(@i, xi>/ 
S(uj l ,  xi) is the geometric factor which relates the group 
overlap, G, for the LCAO symmetry-adapted orbirnlq to the 
two-center overlap, S, between the AO's. Expanding further 

<@jIHC~$I~j)= Xij(ujll-1/2v~ + VIxJ + (qll 2VjIxi) + 
$2 

(u~~lv1lxj~ + (uj1IvG IXj) + (uj1lvexlxj) (224  

( ~ ~ l H ~ , O f f " l @ ~ )  = Xij[(xil-l/~V; + Vllujl) + (~~1.2  Vjlujl) + 3=2 
(XjlVM Iujl) + (XjlVG Iujl) + (xjIve,Ivjl)] (22b) 

On recognizing that in the first term in (22a) and (226) xi 
and vil are assumed to be eigenfunctions of I-'/z V 12 + VM I 
and V 12 + V1 I, respectively, we may invoke the orbital 
ionization energy approximation for these terms. Subse- 
quently the expression for the off-diagonal elements accord- 
ing to (21) becomes 
HML -Hcom 

ij  - eff ( @ j ,  xi) = '/2GMLjj [Ej(qM)j + Ej(qL)j + 
2(Ujll e ~lXj) f (u i11V11X1)+(XjIVMlui l )+  j= 2 

2(q1 IV,IXj) + 204, IVexIXi)] (23) 
where GMLij is the group overlap between metal and ligands. 
The third and fourth terms in (23) are two-center terms 
while the remaining terms are three center. Applying the 
point-charge and Mulliken multicenter integral approxima- 
tions to these terms reduces them as 

where UL and ULex are splitting and external potential terms, 
respectively, and 

Simplifying (28) by writing the whole term within the 
braces as (H'L)j reduces (26) to the form 

4. Orbital Ionization Energies. A modified approach to 
evaluating orbital ionization energies as an approximation to 
the one-center terms in the molecular integrals is presented 
in detail in Appendix 11. 

The calculated results provide one-electron MO's in principle. 
However, because of the semiempiricism of the method, 
multielectron interactions have been accounted for at least in 
the one-center terms. Also the greater portion of the multi- 
center interactions have been reduced to weighted averages 
of one center terms, which are further treated in the point- 
charge approximation. Yet there is still some residue owing 
to the multicenter, two-electron interactions, which have 
been totally neglected so far as the exchange interactions are 
concerned. Thus a relatively small but important "spin- 
pairing" energy correction to the calculated one-electron 
MO's should be accounted for. It is proposed that the 

5. "Effective Spin" Interaction in One-Electron MO's. 
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orbitals having the electron occupation number n,  the total 
distribution is nZiCi2.  Now in determining S:J , each elec- 
tron or fraction is considered as a separate entity so that the 
individual entities interact with each other, but no one entity 
interacts with itself. Thus there may be a maximum of (n + 
2) and a minimum of n entities in any given MO. Hence the 
general expression for the average energy of the spin interac- 
tion is 

E,,” = TCjDi I [@(y + 1)) - FSi$(S‘,i + 1)] (3 2) 
I 

Any attempt to  evaluate @(s+ 1)) should consider that in 
a given LCAO-MO the n electrons have a distribution over 
the component AO’s proportional to Ci2;  thus the average 
spin is found by weighting every possible spin combination 
(within the limits of n),  or fraction thereof, by the total spin 
multiplicity. Jorgensen has derived the relation” 
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following “effective spin” recipe can be applied for these 
purposes. 

Jorgen~en’~  has discussed interelectronic repulsion and 
spin-pairing energy corrections in some detail. The mathe- 
matical basis for Jorgensen’s approach has been verified in- 
dependently by Slater.14 If we wish to apply these same 
concepts to a molecular orbital, it must be recognized that 
the MO is a linear combination of atomic functions, and the 
eigenvectors multiply both spin and spatial parts of the AO’s. 
Thus the spin-interaction corrections derived by Jorgensen 
and Slater for atomic configurations can be incorporated as 
follows. 

We will assume a nondegenerate, one-electron LCAO-MO 
function composed of the atomic bases x1 and q32 with orbital 
coefficients C1 and Cz , respectively. The effective distribu- 
tion of the electron spin is SiQ = C1 I l / 2  1 and Si3 = C22 11/2 I ,  
so that fractional components are assigned to x1 and $J~. It 
is assumed that C, and Cz are close to being the correct 
coefficients for the MO even though it is not an accurate spin 
orbital. The interaction between these components may be 
expressed according to the Hamiltonian 

where K ,  is a constagt of energy. The total effective spin, 
S, may be taken as S = Si&) + Sk“,,‘, whence 

and the Hamiltonian becomes 

Thus the energy for this interaction is 

The second and third terms within the brackets of eq 31 
have fixed values, depending on the spins of the two elec- 
trons, while the first term may assume different values. This 
will give rise to different eigenvalues for any fixed set of spin- 
spin interactions. The average of the en_ergies associated 
with all the different possible values of S should represent 
that amount of energy by which the calculated one-electron 
MO deviates from its correct eigenvalue. 

In order t o  evaluate (31) it must be recognized that the 
constant term K ,  includes both the electron repulsion param- 
eter and the spin-pairing energy parameter as defined by 
Jorgensen.” This is in addition to the bulk of the repulsion 
already accounted for on the basis of selecting the various di- 
agonal matrix elements for the calculation of the MO’s. In 
fact, it is reasonable to write the parameter as Deff = Z i C i 2D i ?  
where Deff is the effective parameter for the MO’s and Dj is 
the analogous quantity for the ith A 0  in the MO. The latter 
parameters have been given by Jorgensen for vgrious atomic 
configuration_: Also if an average value of S is found by 
calculating (S(S + 1)) then eq 31 becomes 

For any MO described as a linear combination of atomic 
(13) C. K. Jorgensen, “Modern Aspects of Ligand Field Theory,” 

(14) J. C. Slater, Phys. Rev., 165, 655 (1968). 
(15) (a) C. K. Jorgensen, “Orbitals in Atoms and Molecules,” 

American Elsevier, New York, N. Y., 1972,  and references therein. 

Academic Press, New York, N. Y., 1969, Chapter 2; (b) Solid State 
Phys., 13, 375 (1962). 

n(n + 2 )  21+ 1 n(n - 1) 
(Tis+ 1)) = - - - ~ 

4 ( 1 + 1 )  2 

for pure atomic configurations, 1” .  The term n(n + 2)/4 is 
actually S,,, whereas the second term is a correction accord- 
ing to n and the “1” degeneracy. The analogy between this 
relation and eq 32 is that the average spin is an “effective 
average” dependent on the composition of the MO, and the 
spin interactions have been introduced directly rather than as 
a correction to S,,,. 

6 .  Evaluation of Integrals and Method of Computation. 
Diatomic Integrals. The computerized program is based on 
integration by numerical quadrature. There are no restric- 
tions on the number of Slater type terms occurring in the 
atomic wave functions. 

Group Overlap Integrals. The computerized program takes 
the diatomic overlap integrals and computes group overlap 
integrals as a function of symmetry. The proper transforma- 
tion of coordinates from diatomic to group overlap integrals 
is incorporated. The integrals include the normalization fac- 
tor due to ligand-ligand overlap. In the latter evaluation, 
transformation of coordinates is also considered in the evalua- 
tion of the normalization factor, so that rotational invariance 
is preserved throughout. 

the procedures proposed here, and the usual diagonalization 
routine is carried out. 

Orbital Energies. The entire computation is iterated to self- 
consistent charge and configuration (SCCC) within an interval 
of kO.01 unit of atomic charge and orbital population. 

Orbital Population Analysis. Lowdin orthogonalization9 
is employed in the final. stages of calculation to arrive at a 
population analysis, since a recent investigation has shown 
that only the Lowdin procedure is capable of reproducing 
the correct magnitude and sign of electric dipole moments 
for small molecules.’6 Furthermore, calculations on first- 
row transition metal-hexafluoro complexes show that reliable 
nuclear hyperfine parameters associated with electron spin 
density at fluorine are attained only with Lowdin popula- 
tion.2 
Discussion 

upon the accuracy of the Mulllken multicenter integral and 
point-charge approximations. The first of these has been 
used with considerable success in calculations on transition 
metal complexes wherein the integrals were calculated in 

H Matrices. All H matrices are constructed according to 

Of course the success of this method of calculation depends 

(16) E. W. Stout ,  Jr., and P. Politzer, Theor. Chim. Acta,  13, 
379 (1968). 
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closed form rather than approximated.12 Furthermore a 
numerical comparison to exact SCF-LCAO-MO computa- 
tions show that this approximation is quite satisfactory for 
most  purpose^.'^ The only instance where the approxima- 
tion is not valid is in the computation of multicenter exchange 
integrals,’ which, fortunately, are not directly involved in the 
present computational model. 

We turn our attention now to the point-charge approxima- 
tion. In order to assess the accuracy of this approximation, 
the values of 1/RML and l /RLL for CuC14’-are comparedwith 
the nuclear attraction integrals calculated exactly for copper 
3d, 4s, and 4p and chlorine 3s and 3p orbitals.2~’8 These 
results as presented in Appendix I show that the approxima- 
tion is quite satisfactory at the specified internuclear dis- 
tances. The largest errors occur when p orbitals are involved, 
particularly if these are diffuse 4p orbitals. However even in 
these cases the consequences are not drastic since such terms 
wherein the point-charge approximation is employed make 
only a very minor contribution to the energy. Of course, it 
is not anticipated that the results will be equally good at 
small internuclear distances, although similar comparisons of 
such integrals in CH4 (RCH = 1.09 8;  R H H  = 1.26 A) and 
CF4 (RCF = 1.32 A; RFF 2.16 A) do not exceed the errors 
given in Appendix I.19 Fortunately in most molecules of 
inorganic interest the bond distances are in a range of 2 2  8. 

One last point of consideration is the potential due to the 
external charge. The important consequences of this have 
been clearly demonstrated in the recent work of Brown, 
et d.,” and in the results presented in part 11. 

This is not regarded merely as a spherical potential as has 
been the case hitherto.’ The logical assumption, which is 
supported by crystal structures of specific examples, is that 
the external potential (of the lattice) exerts a greater effect 
on the ligands than on the metal since the lattice charges are 
situated much closer to the ligands than to the metal. Hence, 
the off-diagonal element due to the external potential is non- 
vanishing. The radial variation of a spherical potential trans- 
fers metal and ligand electrons to the center of the molecule, 
and thus the effect on both metal and ligand electrons is the 
same. Also, because of its spherical distribution, such a 
potential has no off-diagonal elements. For the sake of con- 
venience of treating complex ions both in the solid and in 
solution, where in the latter instance the exact positions of 
the external lattice charges are not known, the external 
potential is superimposed on each of the ligands. 

All of the features of this computational model are con- 
sidered in detail in part I1 of this series, where specific calcula- 
tions are presented and the results are compared both with 
experiment and with other more sophisticated computational 
methods . 

Computer Center of LSUNO for making available the facili- 
ties to do this work and to the National Science Foundation 
for the grant to purchase a PDP-10 computer. We are also 
indebted to Dr. L. Harris for many helpful discussions and 
for allowing us to use his original derivations which made the 
evolution of the present work possible. 
Appendix 1. Approximation to Nuclear Attraction Integrals 

Acknowledgment. The authors are indebted to the 

The one-electron, two-center nuclear attraction integrals 

(17) G. Blyholder and C. A.  Coulson, Theov. Chim. Acta, 10, 

(18)  P. Rox, Doctoral Thesis, Eindhoven, The Netherlands, 1964. 
(19) L.  E. Harris and E. A. Boudreaux, unpublished results. 
(20) (a) R. D.  Brown and P .  G. Burton, Theor. Chim. Acta, 18, 

309 (1970);  (b) R. D. Brown, B. H. James, and M. R. O’Dwyer, 
ibid., 19,  4 5  (1970).  

316, (1968) .  

Inorganic Chemistry, Vol. 12, No. 7, 1973 1595 

Table I. Values of Nuclear Attraction Integrals for CuC1,’- a 

Dev from ll/R)C % 
.I___ 

Exact valueb 

R = 2.21 A; ll/R) = 0.23843C 

(~4poIl/rC1IX4pu) I- 0.28316 +18.10 

(X3d6 il/rC1IX&j) z= 0.24185 +1.43 

(x4sll/rc~Ix4s) =0.23741 -0.43 

(X4pn il/rc1IX4pn) = 0.20662 -13.30 

(X3dn Il/rC1IXadn) = 0.24084 +1.01 
(X3d6 I1/rClIXjdi3) = 0.23387 -1.91 
( U , ~ I ~ / ~ C ~ I U ~ $  = 0.23832 -0.05 

(U,pn ll/rcu IU,~,) = 0.22741 -4.61 
(u3pu11/~cu1u3po) = 0.25910 +8.61 

R = 3.62 A; ll/R) = 0.14599 
(u3sil/rc~lu3$ = 0.14611 t0.08 
( ~ ~ ~ ~ l l / ~ c ~ l ~ , ~ ~ )  = 0.15067 +3.20 
( ~ , ~ ~ l l / r c 1 I ~ , ~ ~ )  = 0.14344 -1.75 

a All values in atomic units. b From ref 18. C From ref 2. 

are of the general form ( ~ ~ I l / r ~ ’ I x ~ g ) ,  where x is an orbital 
centered on a tomN and the point of integration over l / r N i  
is at any other atom N’ .  

If Slater orbitals are employed, exact integration results in 
an exponential power series in terms of the orbital parameters 
n and { and the internuclear separation RNN,. In the point- 
charge approximation p = ( { r )  -+ 00, and the integral reduces 
to 1/R“ 1 .  Although in actual situations this approximation 
is far from exact, other compensating factors seem to ensure 
that the point-charge approximation appears to be an adequate 
representation for such purposes, The data presented in 
Table I for C U C ~ ~ ~ -  compare the relative merits of the point- 
charge approximation and an exact calculation. 
Appendix 11. Bonding Orbital Ionization Energies 

The integrals involving that part of the operator which 
refers to the atomic cores (--l/2 V i 2  -t Vi) are taken to be 
equal to the ionization energy of the particular orbital in- 
volved on the atom, as a function of its atomic charge within 
the molecule. Of the various methods of calculation suggest- 
ed, those made by Basch, et U Z . , ~ ‘ ~ ’ ’  are widely used. Other 
 worker^^^-^^ have also suggested some nominal modifications. 

Basch, et aZ.,21~’2 emphasized the role of all spectral terms 
within a specified valence configuration, and the weighting 
of the VOIE’s as a function of the atomic charge. The latter 
is allowed to vary quadratically for a fixed computed orbital 
configuration of the atom in the molecule. Cusachs, et al.,23324 
averaged the energies of the various configurations and then 
related these averages to both the atomic populations and 
charges. The derived relation may be either linear or qua- 
dratic. 

of Hcom with some experimentally determined quantity. The 
crux of the problem is to determine suitable values from 
atomic spectral data to approximate the integral. It is com- 
mon practice to write the average energy as a single deter- 
minant representation of a given atomic configuration with 
minimum ML and Ms values, which can be written as a 
linear combination of all the spectral terms belonging to 
that configuration. For the purposes of MO calculations, 

In any event the objective is to relate the matrix elements 

(21) H. Basch, A. Viste, and H.  E .  Gray, Theor. Chim. Acta, 3,  

(22) H.  Basch, A. Viste, and H. B. Gray, J. Chem. Phys., 44, 10 

(23) L.  C. Cusachs and J .  W. Reynolds, J. Chem. Phys., 4 3 ,  3 1 6 0  

(24) L. C. Cusachs and J .  R.  Linn, Jr., J.  Chem. Phys., 4 6 ,  2 9 1 9  

(25) T. Anno, Theor. Chim. Acta, 18,  208  (1970) .  
(26) T. Anno, Theor. Chim. Acta, 18, 2 2 3  (1970).  

458  (1965) .  

( 1966).  

( 1965).  

(1967).  
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these configurations have been limited to bonding orbital 
configurations only. 

However, it is a well-known fact that configuration inter- 
action involving other orbitals plays a major role in determin- 
ing the average energy of ionization. Hence the only plaus- 
ible way of accounting for this is to limit the spectroscopic 
terms energetically according to the electron density of the 
atom in the molecule, irrespective of the bonding orbital con- 
figuration. In order to accomplish this the following pro- 
cedure is proposed. 

(1) No a priori limitation should be imposed on the atomic 
orbital configurations, and certainly not on the A 0  basis con- 
sidered for bonding only. 

(2) Since the ionization energies are functions of the net 
charge in the atom (not the orbital alone) which may even 
be fractional, then the term energies contributing to the 
ionization should be restricted accordingly. It is proposed 
that if the net atomic charge on the bonded atom is q + x 
(x > l) ,  then the highest spectral terms that should be con- 
sidered in the average are those limited to x times the ioniza- 
tion potential of the atom bearing the charge q .  To avoid 
confusion, we shall call these orbital energies BOIE (bonding 
orbital ionization energies) rather than VOIE. 

The BOIE for an atom in the interval of the integral ioniza- 
tion stages n to n + 1 is represented as 

(BOIE)n+n+i = (IP)n+i + En+i - E n ‘  (1 -AII) 
n ’ = n + x  (x> 1) 

where IP is the ionization potential and ,!? is the weighted 
average of the acceptable term energies. As a typical ex- 
ample, the possible atomic terms contributing to the BOIE 
of the 3d electron in the Ni atom within the interval 1 < 
atomic charge < 2 are given in Table 11. 

for each of the con- 
figurations depend upon the charge on the atom. The values 
are zero when the electron does not “attain” the configura- 
tion. For example, for a charge less than (1 + 5 1.558/ 
146.408), El(s) values for 3d84p and 3d85s are zero, and for 
a charge higher than this but less than (1 + 91.799/146.408), 
El for 3d85s only is zero. The orbitals considered for bond- 
ing are 3d, 4s, and 4p only, but configurations 3d84s5s, 
3d94d, and 3d96s are not considered, as there are no corre- 
sponding configurations in Ni(I1). However, for (BOIE)4So, 
3ds4s5s + 3d85s should be considered along with 3d84s2 -+ 
3d84s, 3d94s + 3d9, and 3d84s4p -+ 3d84p. 

In any case, the overall configuration weighted or simple 
arithmatic averages (BOIE)o+l for q = 0, (BOIE)I -t2 for 
q = 1, and (BOIE)2,3 for q = 2 are taken, and the BOIE(q) 
curve is constructed. The shape the curve will assume 
depends on both the number of electrons of interest 
(. . . lX .  . .) in the configurations as well as on the charge. 
A summary is given in Table 111. 

parameters for the charge but not fitted parameters of a 
quadratic equation, or any equation for that matter. 

Method of Cumputation. 1 .  Cationic Species. The 
ionization potentials, the atomic configurations, and the 
energies above the ground level, as well as their correspond- 
ing J values, are the inputs for a computerized program. The 
program calculates the weighted averages of energies for each 
configuration at an interval of O.O5(IP),+, and finally the 
total average. From the IP’s and the averages, the BOIE’s 
are calculated utilizing equation 1-AI1 for different ionized 
stages. The charge dependence parameters are then calcu- 
lated regarding (BOIE)o,l for q = 0 and (BOIE)+l .++2 for 

As assumed above, the values for 

The parameters of the resulting equations are “derived” 

A. Dutta-Ahmed and Edward A. Boudreaux 

Table 11. Condensed Spectroscopic Energy Levels of Ni (First 
IP = 61.579 kK: Second IP = 146.408 kK: Third IP = 283.700 kK) 

Ni(1) Ni(I1) Ni{III) 
Confignu Energyb Confignu Energyb Confignu Energyb 

3da4s 0.000 3d9 0.000 3dS 0.000 
3d9 1.507 

3di0 
3d84s 
3d84s4p 
3d9 4p 

- 

~ 

0.205 
3.410 

14.729 
22.102 
25.75 3 
28.569 
32.982 

8.394 
32.523 
51.558 
79.924 
91.799 
94.727 

3d74s 
3d74p 

3d75s 

~ 

17.231 
53.704 
79.143 

110.212 
133.691 
181.01 9 
183.053 

42.621 
44.262 

3d84s4v 47.030 
3d84s5s 48.467 
3d95p 48.715 
3d94d 48.953 
3dS4s5s 50.466 
3d95p 50.689 
3d94d 50.754 
3d96s 52.197 

a Those configugtions yhich are underlined are the ones to be 
employed for E,, E , ,  and E ,  in calculating the BOIE’s. b All 
values given in kK (kilokaisers). 

Table 111. Shape of BOIE(a) Curves 
Charge interval 

* . .I“. . . 0-1 1-2 2-3 
. . .1’. . . Linear Linear4 Linearb 
. . . I 2 .  . . 
. . . I 2 .  . . (Parallel Linear Linearb 

. , .i3. . . (Parallel Linear QuadraticC 

a If there is only one set of configurations, the linear curve will 
be parallel to the q axis. If there are two different sets such as 
3d94s + 3d9 for (BOIE),,, and 3d84s -f 3d8 for (BOIE), , z ,  the 
slope may not be zero. The BOIE’s then, must be arithmetic 
averages. b In some cases quadratic for consideration stated in a 
above. C For l x > 3  and charge >3, the polynomial of degree 
greater than 2 can be used. 

Table IV. A Representative Comparison of VOIE’s Calculated by 
Basch, et al. , 2 1 3 2 2  with BOIE’s of the Present Worka 

(Parallel 
to q axis) 

to q axis) 

to q axis) 

3d of Ni 4s of N i  4p of Ni 
Charge VOIE BOIE VOIE BOIE VOIE BOIE 

1.1 205.7 185.2 163.2 148.8 113.7 41.9 
1.2 220.7 191.5 172.3 146.8 121.6 45.7 
1.4 249.3 227.6 190.9 152.8 137.7 120.7 
1.5 264.0 235.7 200.4 157.9 146.0 118.5 
1.6 278.8 243.7 210.1 163.0 154.5 118.8 
1.8 309.4 286.9 229.9 173.3 171.9 128.9 
1.9 325.1 298.2 240.0 178.4 180.8 133.9 

a In both calculations arithmetic averages rather than configuration 
weighted averages have been considered for simplicity. All values in 
kilokaisers. 

q = 1. The parameters vary for different ranges of respec- 
tive atomic charges. These parameters, in turn, are the 
inputs for final MO calculations (see part 11) and the appro- 
priate parameters are picked according to respective atomic 
charges. 

2. Anionic Species. In MO calculations the BOIE’s of 
anionic species are also needed. The present method requires 
a fairly detailed knowledge of the pertinent spectroscopic 
terms and their energies. Unfortunately, such data for an- 
ionic states are not readily available. However, the procedure 
suggested below for such cases is again better than the extra- 
polation method. 
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Electron affinities can be taken as approximate IP’s. As 
the ionization energies of anionic species are fairly low, the 
higher excited states are easily attained. A reasonable guess 
can be made about these excited states and their energies by 
comparing them to those of other isoelectronic cases for 
which the required information is known. As shown in part 
11, values calculated on this basis are well suited to the MO 
calculations, as the results are excellent. A more detailed 
treatment of anionic species will appear in a subsequent 
publication. 

method, the evaluation of BOIE’s of 3d, 4s, and 4p  orbitals 
of Ni are documented elsewhere.” A comparison of the 
overall VOIE’s of Ni and their respective charge dependence 
calculated by the present method and those by Basch, et al. 
is shown in Table IV. 

(BOIE),,n+l attains a limiting value when the highest 
term of the configurations considered is reached. Thus, 

Results and Discussion. To exemplify the proposed 

Inorganic Chemistry, Vol. 12, No. 7, 1973 1597 

(27) A listing of BOIE’s as a function of charge for the 3d, 49, 
and 4p orbitals of Ni will appear following these pages in the micro- 
film edition of this volume of the journal. Single copies may be 
obtained from the Business Operations Office, Books and Journals 
Division, American Chemical Society, 1155 Sixteenth St., N.W., 
Washington, D. C. 20036. Remit check or money order for $3.00 
for photocopy or $2.00 for microfiche, referring to code number 
INORG-73-1590. 

when the electron attains the highest term of the configura- 
tions, the (BOIE)n+ntl would be independent of charge. 
One implication is that if the charge on the atom gives a 
limiting energy which exceeds that corresponding to the 
highest term of the configurations considered, the bonding 
may “involve” orbitals other than those already considered. 
In other words, the charge on the atom would depend, among 
other things, on the orbitals involved in bonding. 

By the present method of evaluation of orbital ionization 
energies, it will be possible to attain more accurate informa- 
tion regarding the participation of virtual orbitals in bonding. 
To support this contention, a comparison between observed 
and calculated molecular properties which show a critical 
dependence on atomic charge distribution is presented and 
discussed in detail in part 11. Also discussed in part I1 are 
the implications and consequences of the very significant 
difference in the numerical values of calculated properties 
using the proposed BOIE’s and those using the usual VOIE’s. 

It is obvious that the proposed method relies heavily on a 
knowledge of spectroscopic states. In cases where such data 
are incomplete, or lacking, it is possible to arrive at suitable 
information by acceptable extrapolation techniques. Al- 
though the latter procedure will of necessity lack the accuracy 
of experimental data, this in no way will impair the basic ap- 
proach to the calculation of VOIE proposed here. 
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A new parameter-free method for doing semiempirical molecular orbital calculations has been applied to  octahedral fluoro 
complexes MF,’- (M = Ti3+, Cr3+, Fe3+, Ni2+). Calculations of ligand field splittings, superhyperfine coupling constants, 
and spin densities are found to be in excellent agreement with experiment. In all cases the results obtained are at least as 
good as the best SCF calculations done on these complexes thus far. 

Introduction 

bital calculations on inorganic coordination complexes and 
molecules has been developed in part I of this series.’ 
this part of the series we present com utational results on the 
model systems TiF63-, CrF63-, FeF,’, and NiF64- (in the 
salt KNiF3). This selection is based on the fact that in these 
particular species it is possible to compare the results of this 
study with those of other theoretical studies having varying 
degrees of sophistication. Also these complexes allow a corn- 
parison to be made between the experimental and calculated 
data regarding ligand field splitting (lODq), charge-transfer 
spectra, superhyperfine coupling constants and spin densities 
(derived from epr and nmr), and net atomic charges (derived 
from X-ray absorption). Consequently a very crucial test of 
the accuracy and applicability of the method is thus provided. 

A new approach to performing semiempirical molecular or- 

In 

(1) Part I: 
12, 1590 (1973). 

A. Dutta-Ahmed and E. A. Boudreaux, Inorg. Chem., 

Method of Calculation 

given previously.’ Thus only the basic features of the meth- 
od will be reiterated here. 

Details of the computational approach have already been 

The diagonal elements of the Hamiltonian are 

(rd4 ) 
H’ii = ei(4M)i -n(qL -!- qex)(l/RML) -k q‘L 5 F M  (1) 

where HMii and HLjj refer to the metal and ligands, respec- 


